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Abstract—Currently, there are no mission-capable 
systems that can successfully detect advanced persis-
tent threats (APTs). These types of threats are haz-
ardous in critical infrastructures (CIs). Due to the in-
tegration of operational technology (OT) and informa-
tion communication technology (ICT), CI systems are 
particularly vulnerable to cyberattacks. In addition, 
power systems, in particular, are an attractive target 
for attackers, as they are responsible for the operation 
of modern infrastructures and are thus of great im-
portance for modern warfare or even for strategic pur-
poses of other criminal activities. Virtual power plants 
(VPPs) are a new implementation of power plants for 
energy management. The protection of virtual power 
plants against APTs is not yet sufficiently researched. 
This circumstance raises the research question - What 
might an APT detection system architecture for VPPs 
look like?
Our methodology is based on intensive literature 

research to bundle knowledge from different sub-areas 
to solve a superordinate problem. After the litera-
ture review and domain analysis, a synthesis of new 
knowledge is provided in the presentation of a possible 
architecture. The in-depth proposal for a potential 
system architecture relies on the study of VPPs, APTs, 
and previous prevention mechanisms. The architecture 
is then evaluated for its effectiveness based on the 
challenges identified.
The proposed architecture combines concepts such as 

defense-in-depth and breath with situation awareness, 
and the observe, orient, decide, and act loop. Further-
more, a combination of traditional detection methods 
with graph analysis in the architecture is targeted to 
meet the challenges and peculiarities of VPPs and 
APTs.

Index Terms—Attack Detection, Virtual Power 
Plants (VPP), Advanced Persistent Threats (APT), 
Critical Infrastructure

I. Introduction

The increasing spread of decentralized energy resources
has led to the concept of Virtual Power Plants (VPP)
gaining acceptance and pointing the way to the future [1].
VPPs bundle decentralized energy resources (DERs) and
assume the role of central control and monitoring [2].
VPPs are part of critical infrastructures (CI) and, thus,
sensitive and strategic targets [3], [4]. Attacks on CI
systems can cause immense damage, such as economic
slowdowns [5]. There is also an increasing awareness that
there is no solution that prevents entirely from cyber-
attacks; some can only be mitigated [6]. A resilient system
needs efficient mitigation and robust prevention.
Recent reports [7], [8], e.g., one from the European

Council on Foreign Relations (ECFR) [9], highlighted the
critical security threat, especially for the energy sector. A
wide variety of attackers are conceivable, each pursuing
different goals [10].
The Canadian Centre for Cyber Security report shows

examples of attacks by both cybercriminals and state-
sponsored actors on the electricity sector [11]. The case
of Edesur S.A., dated July 07, 2020, can be cited as a
local energy distributor in Buenos Aires from Argentina
for cyber-criminal activities. In this case, ransomware
disrupted some IT system functions [12]. So far, state-
sponsored activities have increased espionage [11], and if
an attack meets specific criteria, it can also be considered
a declaration of war [13], [14].
An excerpt of meaningful activities is a case from 2019

where actors sponsored by the Chinese state attacked
several US utility providers. Remote access trojans (RAT)
were installed, allowing the infected systems to be con-
trolled from the outside and the possibility to exfiltrate
information. [15] In 2018, Russian state-sponsored actors
spied on several areas of CI, including the energy sector.
The operation aimed to obtain information about cyber-
physical systems (CPS). Among other things, the attackers
tapped the configuration and profile files of ICS or SCADA
systems. [16] The examples show, that various techniques,
tactics, and procedures (TTP) will enable it to infiltrate
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the target’s systems.
The use of sophisticated malware and different TTPs

related to a specific target are characteristics of an APT,
which poses a particular threat due to its properties. [17],
[18] Thus, the capabilities, also outside the previously
mentioned espionage examples, of an APT are visible in
the famous case of Stuxnet. Attackers exploited multiple
zero-day vulnerabilities and created specific malware for
the target to sabotage the CI of Iran’s uranium enrichment
program over a long time. Stuxnet was also discovered
forensically in the post-attack phase after the damage to
the natural environment had occurred. [19], [20]
In particular, DERs have contributed to the estab-

lishment of a new type of power plant, the VPPs [21],
which brings new and expanded requirements for attack
detection.
The points just mentioned, the APTs and the particular

security situation of VPPs, lead to the following research
question:
“RQ: What does an APT detection system architecture

for VPP look like?”
The RQ leads to the following three sub-questions:
• SQ1: What are the characteristics and unique features
of VPPs in contrast to pure IT-System?

• SQ2: What is the threat landscape for VPPs, and
what are the unique characteristics of APTs in this
domain?

• SQ3: What makes it so difficult to prevent a APT in
general?

After answering these sub-questions, the challenges and
particularities are identified, which serve as the basis
for presenting a possible architecture for answering the
research question.
The contribution of this paper includes the following

main aspects:
• Based on an extensive literature review, a detailed
overview of the concept of VPPs, their threat land-
scape, and possible detection measures of APTs in the
domain. (Section II, III, IV)

• A requirements elicitation for an attack detection
system architecture from three perspectives. The
VPPs, the APTs, and previous detection systems.
(Section II, III, IV)

• A proposal for an attack detection system architec-
ture that meets the requirements raised in the paper.
(Section V

The methodology is based on literature research to bundle
knowledge from different sub-areas to solve a superordi-
nate problem; this reflects in the structure of the RQ and
SQ. After the literature review and domain analysis, a
synthesis of new knowledge is provided in the presentation
of a proposed architecture.
The structure of the work consists of answering the sub-

questions and then the research question, starting with
Section II. Section III examines the drivers of VPPs and

then focuses on APTs, defining and describing them and
analyzing their characteristics. Section IV answers the
third sub-question (SQ3) by considering the characteristics
and challenges of the previous sections along with the
defensive methods. Section V focuses on answering the
research question (RQ) by combining the previously elabo-
rated specifics with the defense possibilities. A theoretical
evaluation follows this in section VI of the architecture
to determine whether it meets the challenges raised. A
description of further planned work follows in section VII.
Section VIII reviews known work in this area, and sec-
tion IX summarizes the results of this research.

II. Subject Domain to be considered

A clear definition of VPPs is needed to identify the
particularities and challenges (C) of the subject domain
(SD). The presented definition focuses on the domain’s
essential aspects, leaving the VPP operational details
aside.

A virtual power plant (VPP) consists of a port-
folio of decentralized energy resources (DERs)
connected via information and communication
technology (ICT). The interconnection of DERs
is monitored and coordinated by an energy man-
agement system (EMS).

Descriptions and illustrations from [2], [22], and [23] forms
our definition.
The DER portfolio is based upon the operational tech-

nology (OT) layer (SD_C1). The EMS systems and ICT
represent the information technology (IT) layer (SD_C2).
The EMS is the central monitoring and control element
for the entire VPP (SD_C3). OT and IT interconnect,
meaning that the VPPs assign to the CPSs (SD_C4).
CPSs have the particularity to interact with the nat-

ural world by integrating computing resources and net-
works [24] (SD_C5). An EMS is a type of supervisory
control and data acquisition (SCADA) system, which are
industrial control systems (ICSs) [13].
The architecture, in figure 1, consists of a physical layer

and three system layers: the sensor/actuator, the network,
and the control layer (SD_C6). In addition, there is the
information layer, which consists of two information flows:
The lower layers send measured values to the upper ones
and vice versa for the operation commands.
General factors in which OT and IT differ are listed

below and adapted from the work of [13] (SD_C7).
• Operational objectives: IT systems have data process-
ing as their goal, while OT systems have control of
processes as their goal.

• High availability: The availability differs between IT
and OT as many OT systems, especially critical
infrastructure, may have almost no downtime.

• Geographical position: While IT systems are often
centrally operated at a geographically imposed loca-
tion, OT systems are often distributed and can span

70

Authorized licensed use limited to: Hochschule Hannover. Downloaded on November 22,2022 at 09:37:02 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Architecture of a CPS. Adopted from [25].

long distances, requiring different communications
technologies.

• Technical distinctions: IT systems are pretty stan-
dardized from the hardware, protocols, and operating
systems, while OT systems widely use case-specific
hardware and communication methods and lack stan-
dards.

• Real-time performance: OT systems often require
real-time performance since it makes a big difference
when, for example, a command arrives at the plant.
The command can be benign out one second and
cause a critical error the next.

• Life cycle: IT systems were rapidly changing and
replaced more frequently because it pays to do so.
On the other hand, OT systems are often expensive to
purchase and risky to replace due to the expected high
availability. Therefore, the life cycles of OT systems
are often high and can be in operation for more than
20 years [13], [26].

• Financial possibilities, manufacturers, suppliers, and
the different responsibilities and expertise in the areas
are further factors affecting OT, often differentiated
from IT.

From a security perspective, the differences are even
more significant. OT systems’ design is usually unsuitable
for operation in insecure networks [13], [26], so the security
situation for CPSs is often highly challenging (SD_C8).

Security in the IT environment mainly uses the CIA-
Triad (confidentiality, integrity, and availability) [26], [27].
There is a need for an extended security model for OT
security, which considers the physical processes and the
specifics of the environment. Resilience is one measure
of this [26]. Resilience also applies well to the National
Institute of Standards and Technology (NIST) defined
security goals for smart grids, which address: Maintaining
safety, power system reliability, resilience, and supporting
grid modernization [28]. The same applies to the shift
in the importance of the CIA-Triad criteria. With OT,
availability is the most important, followed by integrity,
and confidentiality is the least important. [27] Operational
resilience (OR) is defined by CERT as follows: [29]

"The emergent property of an organization that
can continue to carry out its mission in the
presence of operational stress and disruption that
does not exceed its operational limit."

The authors make a deliberate distinction between re-
silience and OR. OR can be attributed to the fact that
resilience defines a physical property that states that the
material returns to its original shape [29].
The presented concepts and characteristics of the sys-

tems contribute to the answer to SQ1. In conclusion,
VPPs are composed of OT and IT systems. Therefore,
the specifics of both worlds must get addressed in combi-
nation.

III. Threat Environment of the Domain

In addition to the specific threat constraints inherent in
the design of a VPP described in section II, this section
addresses the CI domain’s threat environment (TE). The
CI domain, especially the critical energy infrastructure,
is, according to [7], [8], one of the most popular targets of
global cybercrime, also popular for APTs [30] (TE_C1).
All conceivable forms occur as attackers, from individuals
who want to try their hand to state-sponsored/organized
groups [10] (TE_C2). These include corporations, organi-
zations, "common" cybercriminals, insider threat agents,
hacktivists, nation-states, terrorists, and cyber fighters
(e.g., APT groups) [18]. The typical motives are: creating
financial gains, capability demonstration, securing com-
petitive advantages, private, social, political, or national
interests, intimidation, or even destruction [18]. In a po-
tential cyberwar, critical infrastructure is an important
strategic target [31]. In the sense of war, the motivation
can also be self-defense [18], respectively, the legitimacy
for full-scale war, to justify using force [31].
Often, the system landscapes have grown and secured

with outdated security concepts, such as security by obscu-
rity (TE_C3). In addition, secure communication chan-
nels, authentication and authorization mechanism, and
systems monitoring are often lacking. [13], [32], [33] In
addition to cyberattacks, CPSs are also vulnerable to
physical attacks, mainly due to the geographic distribution
of the systems [13] (TE_C4).

71

Authorized licensed use limited to: Hochschule Hannover. Downloaded on November 22,2022 at 09:37:02 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
Comparison of traditional and APT attacks. Adopted

from [40].

Traditional attacks APT attacks
Attacker single person powerful groups
Target unspecific single specific target
Purpose financial benefits, competitive advantages,

demonstrating abilities strategic benefits
Approach single-run, repeated attempts,

“smash and grab” stays "low and slow",
adapts to resist defenses

A. Advanced Persistent Threats
APTs severely threaten CIs [34], [35].
The name of the threat is composed of three parts:
• Advanced: Stands for the fact that the attack has
more resources than conventional attacks. This re-
source advantage extends to unknown vulnerabilities
- zero-day exploits and highly sophisticated tools. The
knowledge base created by an interdisciplinary team
or the combination can also fill this attribute. [17], [36]
An attack scenario known to the target is no longer
part of the attack repertoire of new APT campaigns.

• Persistent: The threat does not stop until the attacker
reaches his target. He will try to penetrate the system
again and again [17].

• Threat: APT campaigns typically threaten the loss of
sensitive data or compromise critical components and
processes [17]. In addition, some targets, such as CIs,
also offer the threat of disruptive actions [35].

The NIST assigns the following attributes to an APT [37]
(TE_C5):

• Constantly pursues his goals and also repeats his
efforts.

• Adapts to the defensive actions of the target.
• Is not deterred from achieving its goal.

These attributes derive that protection is almost impossi-
ble since the defender must constantly protect himself in
all directions. In contrast, the attacker only has to find one
possible weak point. [35] The mentioned attributes also
apply to the previously, in section I, mentioned hypothesis
of some authors that protection may be impossible and
mitigation is required. APTs are different from traditional
attacks and are subordinate to targeted attacks [38]. Con-
ventional attacks often have a generality and are easy to
detect because they do not try to operate covertly [39]. Ta-
ble I shows other differences in the attack types (TE_C6).
APTs have several stages and belong to multi-stage at-

tacks [41] (TE_C7). The theoretical level number of such
an attack often differs in the literature. Often a number
between three and eight is mentioned [17]. The actual
number used depends on the attacker and the target.
In this work, we would like to follow a survey [17] that
addresses this problem in conjunction and then decides
on five steps. These steps are:

• Step 1: Reconnaissance: Spying on and becoming
familiar with the target is the first phase of a more
complex attack. The more intensively this phase is
pursued, the faster and more successful the attack.
There are different ways to go through this stage.
Examples are intelligence activities in general, like
expert knowledge, insider recruitment, open-source
intelligence (OSINT), and phishing. [17], [42], [43]

• Step 2: Establish Foothold: The second phase de-
scribes the successful penetration of the target system
or network and often includes establishing long-term
access [17], [44].

• Step 3: Lateral Movement / Stay Undetected: The
third phase describes many activities that can be
very different. Typical activities include increasing
privileges, spying on other target systems, and ex-
ploiting them. [17], [44] Depending on the attack, this
phase can also mean securing long-term access to the
systems and adapting to changes in the targets. [17]

• Step 4: Exfiltration/Impediment: In this phase, pur-
sue the primary goal of the attack. The goals can
vary but usually involve data exfiltration or essential
component compromise. [17]

• Step 5: Post-Exfiltration/Post-Impediment: The last
phase involves very different activities based on the
motivation of the attacker and the previous steps.
Further data are collected, components are damaged,
or traces are covered. [17] Likewise, for further at-
tacks, a new backdoor is installed [44].

From a general perspective, APT attacks have three
goals (TE_C8). They steal information (goal one). They
manipulate the functionality or control the system (goal
two). Goal three aims to secure a good position for the
attacker in the future so that the aggressor can exfiltrate
the target quickly and efficiently if needed. [17]
Figure 2 shows the attack tree of an APT. The targets

mentioned first are the focus of the figure. The figure in-
cludes the third target but would not enter the fourth stage
in this scenario. The tree would look different according to
the chosen techniques depending on the selected abstrac-
tion level. For example, the Cyber Kill Chain, the Mitre
ATT&CK, the STRIDE framework, or a combination of
these provide the groundwork [45].
This part references one-half of SQ2. The section iden-

tified the characteristics of APTs for VPPs and noted that
early detection and prevention of these attacks are critical.

B. Target range of VPPs
As shown in figure 1, CPSs are, by architecture, a

layered system where one layer is dependent on the other.
Based on the particular architecture of VPP, multiple
attack vectors can be extracted [2], [46] (TE_C9):

• Direct attacks on IT components. For example, these
attacks can occur on modern SCADA systems or
the EMS system. Direct attacks can manipulate the
operation of the systems. In figure 1, the control layer.
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Fig. 2. APT Attack Tree. Adopted from [17].

• Indirect attacks on IT components. Through false
data injection, which is possible from the outside, the
attacker can control the systems to make decisions in
their favor. This attack is located in the architecture’s
information layer and relates to the network layer, but
attackers can launch this from the lower layers.

• Attacks on the ICT. ICT is essential for the systems
because, as described in section II, even minor delays
can lead to fatal errors.

• Attacks against the OT systems. Direct manipulation
of individual OT systems connected to the network
can have different consequences. Depending on the
component and the level at which the component
operates. These attacks target the sensor and actuator
layers.

The various components and the dependencies between
them increase the attack surface of the VPPs enor-
mously [46] (TE_C10). In addition, VPPs often pursue
very different goals [2]. Only the physical layer of the
architecture is not mentioned in the listing because they
are not crucial for this work. The effects of such an attack
reflect in the data. Attacks within the layer can cause
cascading damage in the other layers and vice versa [13].
The extended attack surface affects a VPP in terms of

an APT, see figure 2, in such a way that both the damage
caused can be more severe and more entry points can be
used to achieve the goal.
What an APT looks like for VPPs depends on the

attackers, the target, and the defenses (TE_C11). Known
APT campaigns are very different, and new ones will not
be similar. Likewise, detection teams must expect that
attackers have already prepared corresponding backdoors
in the systems. The expanded threat landscape of VPPs
poses a great danger, especially in this aspect. The general
threats explanation in the introduction of this section,
along with the description of the attack surface, answers
the remaining half of SQ2 in detail.
In summary, VPPs are a critical and desired target, and

all kinds of motivations and attacker types are conceiv-
able. In addition, due to the unique architecture of these
systems, different attack vectors are feasible, which have
cascading effects on each other. A direct attack on one
layer is often an indirect attack on the others. Since APTs
are very dangerous and considered particularly difficult to
detect [17], [47], this work focuses on detecting them.

IV. Defense Methods against APTs

Successfully defending against APTs is considered an
unsolved problem [17], [48], [49]. Therefore the following
section examines previous approaches and defense meth-
ods (DM). High situational awareness (SA) is needed
to properly assess the situation and take appropriate
action to protect against attacks successfully (DM_C1).
Detecting attacks is an essential part of defense; only
when operators know something is suspicious can they
take action.
Conventional attack detection methods are not able to

detect an APT. These are primarily based on human-
generated cyber threat intelligence and aim to accurately
detect and report specific indicators of compromise (IoC)
(DM_C2). [17], [49]
Attack detection systems divide into three classes:

signature-based intrusion detection systems (SIDS),
anomaly-based (AIDS), and hybrid. The AIDS category
classifies systems based on statistics, knowledge, or ma-
chine learning (ML). [50] SIDS can be ruled out as a
single solution or the core building block because APTs
do not have significant IoCs. Some approaches, such as
HOLMES [51],use a hierarchy of small-step rules to map
more significant issues, but there is a significant risk of
missing individual activities. While anomaly-based tech-
niques can detect new types of attacks, including new
TTPs of APTs, they produce many false positives and
unclassified alerts (DM_C3). In addition, they usually
require a training phase and a normal behavior model
(DM_C4). [50] Statistical approaches are also less suitable
for APT detection since only a few attacks are known,
and the attack techniques are also unpredictable, see the
properties of an APT in section III-A. For the same reason,
knowledge-based approaches are also inadequate for the
task. Therefore, only the ML category of AIDS remains
that meets the APT detection requirements (DM_C5).
ML makes it possible to identify unknown deviations from
normal (trustworthy) behavior. Thus, zero-day exploits
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and internal employees trying to infiltrate the system can
be exposed. However, if the operators do not determine
normal behavior in advance, or this is impossible, the
method cannot meet the detection performance. Further,
the detection methods can be classified based on their
position in the system. A typical distinction is between
network-based IDS (NIDS) and host-based IDS (HIDS).
With NIDS, one quickly achieves a general presump-
tion but has little information about actual activities
(DM_C6). The overall view is low, while HIDS provides
more details [50]. Due to the particular requirements in
our subject domain (section II), HIDS cannot achieve
complete coverage since such systems rarely exist for OT,
and operations often cannot be performed for technical
reasons (DM_C7).
All sources of information are valuable, so an all-

encompassing solution must be considered. Provenance
tracking systems, for example, are increasingly being con-
sidered. Correlation between events from different systems
is essential for selecting the detection method (DM_C8).
The detection system must perform cognitive tasks, com-
bining individual clues to construct incriminating events.
While only AIDSs can detect new TTPs, distinguishing
APTs, SIDS could provide valuable partial information.
Furthermore, AIDS results can usually only serve as clues
and do not provide evidence (DM_C9) [52].
In total, the APT defense must combine several con-

cepts. The basis is an intensive monitoring strategy of
the systems to have any chance to detect all steps of the
attacker theoretically (DM_C10). Building on the moni-
toring, detection at several different locations is required,
which relies on its core machine-learning-based anomaly
detection. The research comprises different aspects so
that both technical tools, such as algorithms and human-
performed processes, interact (DM_C11).
As mentioned, it is vital to increase SA to make the

system more resilient. SA means that the focus is on the
current status of the overall system, and thus not only
prevention but also the restoration of a safe state can
be a consequential action. Nevertheless, both methods
usually require a pre-designed detection of abuses. [17]
Subsequently, mitigation methods are required to fend off
the detected attack. Mitigation methods are not part of
the work due to the complexity of the detection itself.
The essence of the challenges for defense is that success

lies in robust detection. However, this isn’t easy to im-
plement because the characteristics of APTs do not work
with the assumptions of previous detection systems. In
addition, complete coverage of the systems is preferable,
but this isn’t easy to achieve due to the challenges within
the VPP domain. Thus comes the move toward a resilient
system, away from strict adherence to CIA security goals.
Protecting APTs, especially in the area of VPPs, is com-
plex and an unsolved problem. The section has explained
many founders for this; thus, the SQ3 is answered.

Fig. 3. Situation Awareness. Adopted from [56].

V. Detection system architecture

All the previously identified particularities and chal-
lenges from the three perspectives (SQ1 - SQ3), subject
domain II, threat environment III, and defense methods IV
have led to the proposal of an architecture for a detection
system (RQ).
The goal is to identify the attacker’s TTP. The TTPs

are considered "tough" on the pyramid of pain [53]. In the
detection maturity level model (presented in [54], based
on [55]), the proposed architecture would be to cover levels
four to six.

A. Important Concepts

To achieve this goal, the concept of SA is at the
forefront, as depicted in figure 3. The observation of
the environment, also mentioned in section IV, is done
through an intensive monitoring approach. A defense-in-
breath1 strategy is one way to accomplish this purpose. All
necessary data is collected and processed into information
by data mining and machine-learning methods.
Then, the information at the perceptual level is brought

to the comprehension level by integrating and adding
ontologies. The integration looks like linking different
sources and using other sources to enrich and better under-
stand the current information. Similarly, the information
is brought to the understanding level by adding ontologies.
For example, the classification into cyber kill chain phases
could be used in our domain to add additional knowledge
to events. Subsequently, this understanding allows for
making deductions and predictions.

1Definition defense-in-breath: "A planned, systematic set of multi-
disciplinary activities that seek to identify, manage, and reduce risk
of exploitable vulnerabilities at every stage of the system, network, or
subcomponent life cycle (system, network, or product design and de-
velopment; manufacturing; packaging; assembly; system integration;
distribution; operations; maintenance; and retirement). [48]"
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Fig. 4. Orient, Observe, Decide and Act Loop. Adopted from [57].

Considering a defense-in-depth strategy2, we would like
to extend the concept by the observe, orient, decide, act
(OODA) loop, visualized in figure 4. The loop promotes
the interaction of data, algorithms, and humans. Automa-
tion is desirable, but humans still play a significant and
essential role, especially in the decision, act, and feedback
loop. Automating the observe and orient phases is the deci-
sive point because the better this is, the more successfully
the human can complete the following steps. The combina-
tion of strategies leads to NIST’s general recommendation
on security risk management [48] recommendation.
Current research has pointed out two possible ways

to address the APT "low and slow" property, once top-
down and bottom-up approaches. Top-down approaches
use attacks and cyber threat intelligence to map known
knowledge to current events. Bottom-up approaches cor-
relate low-level events to generate higher-level ones, pri-
marily by provenance tracking [49]. Top-down examples
are HOLMES [51], Conan [58], and the approach of Zou
et al. [49]. Approaches based on human-generated cyber
threat intelligence (CTI) are only helpful for applying
already known knowledge, which is no protection against
new sophisticated attacks like APTs. Examples of bottom-
up approaches include Poirot [59], Anubis [60], and Uni-
corn [47].
Unicorn is one of the most promising detection methods

so far. They can bypass the time factor by using its
provenance graph. A provenance graph is a type of data
management in which the system landscape is mapped
using edges for relationships and nodes for entities. Within
the graph, connections between the nodes can then be
recognized, and the origin can be determined. Thus, de-
spite a defense-in-breath approach, they can show hidden
connections between activities otherwise lost in methods
that consider, e.g., classical windowing or single events.
Therefore, this proposed approach of this paper also wants
to use nodes and edges as the data basis. A hierarchical
provenance graph is preferred for the specifics of the VPPs.
A mixture of HIDS and NIDS must be used to cover the
system landscape. This graph goes into detail at the nodes,

2Definition defense-in-depth: "Information security strategy inte-
gration people, technology, and operations capabilities to establish
variable barriers across multiple layers and missions of the organiza-
tion. [48]"

so more information is available. The top layer tries to
represent all systems on a high abstraction level.
Furthermore, not only the correlations of the individual

events are interesting, but also the individual properties
of the events. In the sense of a defense-in-depth approach,
the events are considered individually in parallel. This
parallel view is based on the concepts of Anubis [60], where
an autoencoder takes two inputs, one from a provenance
graph and one event-based.

B. Architecture
To still use human knowledge and other methods well,

the architecture includes a pre-analysis, which holds en-
richment processes, plausibility checks, signature-based
attack detection, and simple anomaly detection. The pre-
analysis should have a plug-able architecture, where dif-
ferent methods can subscribe to the events under con-
sideration and process them append-only. Figure 5 shows
the architecture. The architecture proposes how a system
can detect APTs in a complex domain such as VPPs.
It combines the concept presented in figures 3 and 4
with the defense-in-breath and defense-in-depth strategies
mentioned earlier.
The architecture consists of data sources, which are

then passed through pre-processing and pre-analysis. At
this point, enrichers add valuable state information to the
collected data points, plausibility checks are performed
on the data points, and various analyses of anomaly de-
tections, rule-based detections, etc., are performed. Here,
everything is optional and must be adapted to the data
sources. This leads to many indications and also some ev-
idence, which can also be reported directly. Subsequently,
the data sources that have undergone pre-analysis and pre-
processing are fed into the main analysis. Here, algorithms
are used that specifically take into account the interaction
of the different sources with their clues. Finally, the re-
ported alarms and indications are reviewed by analysts
and operators. Actions are decided, and, if necessary,
feedback is sent to the previously involved systems to point
out false alarms and positive hits.
Figure 5 shows the phases of SA, from Environment

through Perception and Understanding to Projection. The
SA phases also contain the OODA loop’s logical steps. The
Environment phase contains the Observations. The Per-
ception phase represents the Orientation step. In addition,
the step also reaches into the Understand phase, as more
complex cognitive processes are triggered here to gain
understanding. Decisions and actions are also part of two
phases, Understanding and Projection. The understanding
phase can also generate hypotheses, while the projection
phase generates hypotheses and decisions. The action step
is indirectly found in the projection phase since the con-
clusions and decisions also include actions. The feedback
loop differs somewhat in architecture from the concept
since all phases provide feedback on the previous phases.
The data sources cover the defense-in-breath strategy
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and the defense-in-depth strategy by further analysis and
enrichment steps in the Perception phase, the cognitive
processes in the Understanding phase, human decisions,
and the resulting feedback.
The challenges of the VPPs are mainly addressed in

the environment stage since it is essential to collect all
data sources equally and to take them into account later
in the understanding phase. Furthermore, the percep-
tion phase offers excellent potential for individualization.
Here, the knowledge about the physical processes and
the physical properties of the DERs can be of great
advantage. Through the feedback loop and the streaming
property, the system should map an increasingly well-
founded normal behavior model overtime to make even
more accurate predictions about potential intruders in the
systems. The cornerstone for successful attack detection
that can effectively combat APTs in the long term is in
place with this architecture. Due to the pre-analysis and
the basis of anomaly detection, the system will also be able
to detect other attacks effectively.
The architecture does not automatically make the sys-

tem more resilient but allows it to become more resilient.
Because based on the messages of the detection performed
here, it is possible to take measures that enable the
protection of the security objectives. The proposal of this
architecture in the section thus also answers the RQ stated
in section I of the paper, see section I.

VI. Evaluation of the proposed architecture

The section reviews the architecture proposed in sec-
tion V based on the challenges and specifics previously
examined in sections II, III, and IV to determine whether
it meets the requirements.
In summary, the subject domain II has produced the

following challenges and features:
• SD_C1, (SD_C2), (SD_C4): VPPs are intercon-
nected IT and OT systems of many heterogeneous
systems.

• SD_C3: The EMS is the central control and monitor-
ing unit of a VPP.

• SD_C5: A VPP has components that interact with
the outside world.

• SD_C6: A VPP consists of several layers, with one
component influencing the others.

• SD_C7: The OT systems involved have different goals
and focuses and are therefore structured differently.

• SD_C8: The CIA triad is weighted differently for IT
and OT systems. A VPP must therefore take both
requirements into account. Fail safety, in particular,
is becoming increasingly important.

The architecture addresses the challenges (SD_C1 -
SD_C8) by adopting a defense-in-breath monitoring ap-
proach, adapting each system to its capabilities and needs.
Thus, the central EMS, which can perform detailed log-
ging, is configured accordingly. While the OT systems,
which may also have to be perceived as a black box because

the manufacturer does not allow them to add their logging,
are monitored accordingly at the interfaces. Challenge
SD_C6, due to the VPP system structure, requires a
corresponding analysis, which refers to the relationships
between the systems, such as graph-based recognition.
Based on the different and sometimes critical runtime
behavior requirements (SD_C7), the architecture follows
passive logging and reporting without actively intervening
in the systems. Actions are performed consciously by
humans. The architecture does not directly cover SD_C8
because the countermeasures affect the CIA’s protection
goals. The architecture contributes by detecting the at-
tacker as early as possible to allow the operators to comply
with the protection goals.
For the second perspective, the demand landscape (sec-

tion III), the challenges are summarized as follows:
• TE_C1: The VPPs are a desirable target.
• TE_C2: All attacker types and motivations are rep-
resented.

• TE_C3: The domain has implemented a few and
sometimes wrong security measures for a long time.

• TE_C4: Physical attacks are possible.
• TE_C5: APTs are sophisticated and sustained, and
he keeps persisting.

• TE_C6: An APT follows the "stay slow and low"
pattern and is tailored to the target.

• TE_C7: An APT is a multi-stage attack.
• TE_C8: An APT has different goals, stealing infor-
mation, influencing operations, or securing a good
position for the future.

• TE_C9: Direct and indirect attacks on IT, as well as
on the OT level, are possible.

• TE_C10: The heterogeneity between the logical com-
ponents and the concrete system’s versions increases
the attack surface.

• TE_C11: No known attacks can be transferred to
the target system to learn how to defend. The attack
design is up to the attacker and is adapted to the
specific target and its defenses.

The architecture addresses the challenges through
defense-in-breath and depth since the defense cannot make
assumptions about who is attacking and where the access
is occurring. Defense-in-Breath is also a key component
here, as it was previously with the challenges since this
provides complete coverage of the system environment
and is the only way to detect even tiny steps taken by
the attacker. The defense-in-depth strategy for detection
mainly addresses the challenges of APTs. As such, an
attack can be detected only through multiple detection
points and a combination of different methods. This is
why the combination of graph and event analysis is so
promising. Integrating conventional detection methods in
the perception phase ensures effective detection for less
sophisticated attacks or even missteps by an APT.
A look at challenge TE_C11 is necessary because of the
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Fig. 5. Solution sketch for APT detection in VPPs with OODA loop steps.

nature of an APT. It becomes clear that the architecture
favors and sometimes enforces the integration of semi-
to unsupervised learning methods. This is the only way
that the defense-in-depth strategy can detect unknown
and novel attacks or even existing backdoor exploits.
The last segment considers the remaining C extracted

from the DM perspective.
• DM_C1: An effective defense requires the most situ-
ational awareness possible.

• DM_C2: APTs cannot be detected by systems based
on the detection of specific IoCs.

• DM_C3: AIDSs often provide many false positives.
• DM_C4: AIDSs usually requires a training phase.
• DM_C5: Statistical and knowledge-based methods
are hardly applicable due to the lack of data on known
APTs.

• DM_C6: NIDS provides data on many systems but
with low levels of detail.

• DM_C7: HIDS only provide data about their system,
but with a high level of detail and influence on the
system’s performance.

• DM_C8: The correlation of events from different
sources is essential.

• DM_C9: The results of AIDS are often only indica-
tors, not evidence of an incident.

• DM_C10: Intensive monitoring is needed even to
have the ability to detect all steps.

• DM_C11: Besides algorithms, the recognition process
should also consider humans.

The proposed architecture is built on the concept of
SA and was designed around SA (DM_C1). In addition,
the OODA loop is integrated, promoting SA and involv-
ing people in the process (DM_C11). The "Defense-in-
Depth" strategy focuses on challenges DM_C2, DM_C5,
and DM_C8. The focus is on detection and correlation,
achievable, for example, through graph-based detection.

Above this, ML methods that exploit the basis of graph
structure are envisioned. DM_C3 becomes notorious for
not relying exclusively on AIDS, instead using a whole
process. DM_C4 is an unsolved challenge so far. Here
it is assumed that appropriate training in the normal
behavior for the used AIDS is possible. The defense-in-
breath monitoring takes DM_C6, DM_C7, and DM_C10
into account.
This section showed that the architecture proposed here

suits the specifics and challenges studied. Open challenges
are the training data and maintaining the CIA security
goals. However, this can be accessed in the concrete im-
plementation of the architecture and therefore does not
question the usefulness.

VII. Future Work

Detecting anomalies is an essential first step in prevent-
ing APTs. The overall goal of the presented architecture
is to make a VPP more resilient. For this, early signs
must result in resilient actions. The goal is not to detect
a complete APT. The goal is to use early indications
to fend off attacks, especially APTs. Therefore, in the
further course of this research, the entirety of data sources
to actions and procedures that make the systems under
consideration resilient to attacks will be considered. In
addition, the architecture will consider incidents that are
not necessarily the result of an attack.
The overall goal of the previous steps is to fill the

architecture proposed in this paper with concrete algo-
rithms and methods. For the time being, the main focus is
evaluating cognitive processes, where Unicorn, e.g., offers a
possible solution. In addition, we would like to investigate
the combination of neighborhood algorithms with point
and time-series methods to improve the quality of the
results. This step offers the most potential for addressing
the challenges of APTs.
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Optimizations are achieved in an extended perception
phase, supplemented by intelligent enricher and simple
procedures, which are, e.g., directly adapted to the do-
main.
After implementation, field testing and evaluation of

open-source data to practically investigate a concrete in-
stantiation of the architecture. There is still room for im-
provement in processing the results, as anomaly detection
is more indicative. For this purpose, in the future, a user
interface (UI) that links analysis results with raw events
and human CTI will presumably show relevant examples
from the past to classify the incident in the best possible
way.

VIII. Related Work

The section of the paper presents a subset of previous
detection systems that claim to meet the requirements of
APTs. The work of Skopik, Friedberg, and Fiedler [61]
introduces the dangers of APTs in ICT networks and offers
a possible detection. They use the assertion that each
component produces log data somehow, giving valuable
information for establishing SA. This information is to
be used in their approach agnostically with a self-learning
anomaly detection method. The research team around the
authors has several publications on the topic, such as [62],
where they switched from agnostic log consideration to
small parsers and used multi-layer detection with different
correlation points.
Another tool worth mentioning is Unicorn [47], which

has already been mentioned several times in this
paper, as it is particularly promising. The authors
present an APT detection based on provenance graphs.
They use a Thinking-Like-a-Vertex graph analysis tool,
GraphChi [63]. A Weisfeil-Lehman graph kernel al-
gorithm, added subsequently by the authors, extends
GraphChi [64]. The algorithm is responsible for observ-
ing the neighborhood of a node. The neighborhood’s
histograms are generated at runtime and then used to
create fixed-length sketches. These are used in subsequent
steps to cluster and thus distinguish pre-learned normal
behavior from abnormal behavior because if there are
changes in the neighborhood, this becomes visible in the
sketches. The distance from the current state increases the
learned behavior.
Another tool that provides promising results and is built

on provenance graphs is HOLMES [51]. The authors rely
on rules to find patterns in the provenance graph. These
patterns are then guided to a higher level of abstraction to
find connections between individual TTPs. Found patterns
are directed to a further abstraction, including an APT’s
steps. Then, thresholds are used to decide when an APT
has been detected. This approach can provide promising
results despite a set of rules serving as a basis. Since
if they are agnostic enough and rules conspicuous flag
behavior in the neighborhood, this combination of rules
and provenance graph could meet the requirements of

APTs, although rule-based systems as used so far do not.
This tool is based on expert knowledge and is, therefore,
irrelevant for our research for the time being, as we are
looking for an approach that does not require it. The re-
search group behind Holmes further suggests Poirot3 [65],
ProPatrol [66], and SLEUTH [67], which are also detection
systems for APTs.
In their work [68], authors Garrido, Dold, and Frank

show how machine learning on knowledge graphs enables
context-aware security monitoring. The previously consid-
ered provenance graphs are a particular type of knowledge
graphs. The authors also work in a domain that links IT
and OT. They use the linkage to represent observations
from both domains together as a graph. Link prediction
methods are used to detect anomalies, which is done by
learning a normal behavior model beforehand. This work
does not directly target APT detection but offers a high
potential to address these threats.
Anubis [60] is a tool that also relies on provenance

graphs, but not entirely. In addition to the provenance
graph, nodes are considered individually to not only focus
exclusively on an anomaly in the neighborhood but also
to provide further consideration to conspicuous values.
The ideas are up-and-coming; the implementation is based
on a supervised learning approach, which makes the tool
unattractive for our research, as it again only detects
known and similar attacks.
The authors present in [69] an approach to automat-

ically extract cyber threat intelligence (CTI) from dis-
parate sources, put it into a graph structure, and then
model relationships and determine severity. The method
is based on machine-learning methods; this ensures that
new entries can also be classified. The approach combines
techniques from natural language processing, graph the-
ory, and convolutional neural networks. The authors build
on supervised learning, so they have high expectations for
the dataset they create. This method is not suitable for
the proposed architecture for two reasons: the supervised
approach and also because it is based on expert knowledge,
the CTI.
CONAN [58] is an APT detection system that relies

on finite state automata (FSA). The automaton has state
changes based on human CTI in the form of a set of rules.
The authors link the FSA to a provenance graph to report
alarms in a traceable way. This work is based on human
knowledge and a ruleset. Therefore it does not qualify as
a solution for primary detection. Still, it represents an
exciting work due to its unconventional approach.
In addition to the papers, many papers could be con-

sidered as partial solutions or as solutions to specific
instantiations of APTs, which were not mentioned in this
section.

3Beware that there is another system with the same name [59],
which also does APT detection.
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IX. Conclusion

APTs are a particular threat to VPPs and other CIs,
which must be given a high level of attention to ensure that
the systems we rely on are not exploited. In summary, it
can be stated that for SQ1, the combination of IT and OT
and the operating processes of the VPPs place new and
intense demands on an attack detection system. This must
achieve the highest possible coverage of the systems and
components involved. In addition, the real-time behavior
of the monitored components must not be influenced, and
the methods must be adapted to the landscape.
The answer to SQ2 is that the threat level for VPPs

is exceptionally high due to the characteristics surveyed.
APTs are challenging to detect due to their multi-layered
structure, the means used, and their "low and slow" ac-
tions. Many pieces of the puzzle, the single TPP, which are
not suspicious, have to be put together to form a larger
picture.
Subsequently, the answer to SQ3 can be summarized.

Active protection and mitigation of attacks are essential.
Both methods require effective detection of grievances.
Current detection methods often fail due to time or cannot
detect novel attacks.
The architecture presented in the paper considers all the

previously mentioned peculiarities and challenges and is
ready for them. The focus on SA, in combination with the
OODA loop, makes the system suitable for the defense-in-
depth strategy and APT detection in the long run. And
this answers the research question, "What does an APT
detection system architecture for VPP look like?".
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